Otra nueva luz.

“Otra nueva luz”

Compilado por Manlio E. Wydler (°)

 

Cuando dos coches se cruzan en la carretera de noche, los haces de sus faros no chocan entre sí ni rebotan; sencillamente siguen su camino. Los fotones de estas ondas electromagnéticas no interaccionan entre sí, y por eso los sables láser de Star Wars son un imposible: la luz no choca contra la luz ni atraviesa a un malvado soldado imperial.

 

En 2013, científicos de la Universidad de Harvard y del Instituto Tecnológico de Massachusetts (EE.UU.) observaron un curioso fenómeno: a través de un complejo experimento, obtuvieron una nueva forma de materia hecha de luz. En concreto, vieron cómo se formaban parejas de fotones unidos por una extraña interacción. Ahora, estos mismos investigadores han publicado un artículo en Science en el que aseguran que han creado tripletes de fotones, que son un paso más en su objetivo de crear una nueva y exótica forma de materia, hecha de luz.

 

Los átomos de la materia se caracterizan porque se «relacionan» con otros átomos: atraen y repelen a otros átomos, interaccionan. Por todo ello, se forman moléculas y ocurren las reacciones químicas, por ejemplo. Pero los fotones no suelen hacer este tipo de cosas, salvo que los físicos les sometan a complejas pruebas. Pero si lo hicieran, los ordenadores cuánticos o quizás incluso los sables de luz estarían mucho más cerca de materializarse.

 

Vladan Vuletic, Lester Wolfe y Mikhail Lukin han observado tripletes de fotones unidos por una rara interacción. Para lograr este «extraño abrazo» entre partículas, diseñaron una serie de complejos experimentos, en los que hicieron pasar un rayo láser muy débil por una nube de átomos de rubidio en estado de superenfriamiento (solo un poco por encima del cero absoluto, la temperatura mínima posible). No es precisamente algo que se pueda practicar en casa.

 

Lo que ocurrió cuando este láser atravesó la nube, es que los fotones se unieron en parejas o tripletes, como si algún tipo de atracción los hubiera atrapado. ¡Pero eso no es todo! Si los átomos «normales» circulan a casi 300.000 kilómetros por segundo, la velocidad de la luz, y no tienen masa, los fotones que salieron de la nube tenían «una crisis de identidad»: viajaban 100.000 veces más despacio que los fotones que no interaccionaron y tenían una masa similar a una fracción de la masa de un electrón.

 

Según ha dicho Vuletic en un comunicado, estos resultados demuestran que los fotones pueden atraerse o entrelazarse a otros, lo que, en un futuro teórico, podría llevar a crear ordenadores cuánticos increíbles hoy en día, y quién sabe qué más.

 

En los experimentos, los científicos hicieron una «radiografía» de los electrones que salieron de la nube de átomos de rubidio: midieron su frecuencia de oscilación, a partir de una propiedad conocida como fase, y el flujo de salida.

«La fase te dice cuán fuerte están interaccionando. Cuanto mayor, más fuertemente están unidos», dice Aditya Venkatramani, coautor del trabajo. Así, averiguaron que cada uno de los fotones de los tripletes de interaccionaban fuertemente con los otros.

 

¿Por qué ocurrió esto? Los investigadores han creado un modelo físico para explicarlo: en resumen, sugieren que los fotones se comportan con los átomos de rubidio como las abejas con las flores. Cada fotón «aterriza» brevemente en un átomo de rubidio y luego salta a otro.

 

Ahora bien, si varios fotones están viajando así en la nube de rubidio, y ocurre que «se posan» durante más tiempo en los átomos de rubidio, pueden formar un híbrido entre átomo y fotón: un llamado polaritón. Los polaritones son partículas capaces de interaccionar con otros polaritones a través del componente atómico. Y así, los fotones acaban interaccionando con fotones, de forma más indirecta.

 

¿Qué es lo más importante de esto? «Lo más interesante es que se llegasen a formar los tripletes», dice Vuletic. «Tampoco se sabía si la unión de los tripletes sería igual, menos o más fuerte que la de las parejas», pero ahora sí se sabe: es más fuerte.

 

Todo este proceso ocurre en una millonésima de segundo y, curiosamente, se extiende tiempo después de que los fotones dejen atrás la nube de átomos de rubidio superenfriados. «Es como si los fotones “recordaran”», dice Sergio Cantu, otro de los coautores.

 

Tanto es así que los fotones que interaccioan con otros, a través de esa atracción dependiente de los átomos, se comportan como si estuvieran correlacionados, o entrelazados: y resulta que esta propiedad es clave para construir ordenadores cuánticos.

 

Ahora, los científicos tratarán de seguir explorando estos extraños y desconcertantes fenómenos. Entre otras cosas, tratarán de averiguar si es posible hacer que los fotones se repelan. De momento, dicen no tener ni idea de lo que encontrarán: «Con la respulsión de átomos, ¿se puede hacer que formen patrones regulares, como un cristal de luz?», se pregunta Vuletic. «¿Pasará cualquier otra cosa? Todo esto es un territorio realmente inexplorado».

 

(°) Ingeniero, Presidente Honorario de FAPLEV, Vecino Solidario 2001.

Han «construido» polaritones que permiten que los fotones acaben interaccionando de formas interesantes

Nuevas formas de conseguir energía.

“Novedades en la forma de formar más energía”

Compilado por Manlio E. Wydler (°)

La fusión nuclear, la reacción que alimenta al sol, puede ser la clave para la producción de energía limpia e ilimitada. Sin embargo, hasta ahora los científicos se enfrentaban con una problemática: cómo producir más de lo que se consume. Un nuevo desarrollo podría dar respuesta a esta problemática.

 

Los físicos comenzaron a probar, de manera experimental, algunos tipos de novedosos reactores y encontraron que una extraña esfera puede ser la clave para generar más energía de fusión, ya que tiene el potencial para superar el dilema de producir más y consumir menos.

 

Su particularidad es que fusionaría hidrógeno y boro, en lugar de isótopos de hidrógeno como el deuterio y el tritio, y, además, utiliza láseres para calentar el núcleo hasta 200 veces más que en el centro del sol. Eso no es todo, sino que este dispositivo no produce neutrones, por lo que no crea ningún tipo de desecho radiactivo.

 

“Esto pone nuestro enfoque por encima de todas las demás tecnologías de energía de fusión”, destacó Heinrich Hora, de la universidad australiana de Nueva Gales del Sur, quien está a cargo del proyecto, reseñó Science Alert.

 

A diferencia de lo que sucede con las reacciones de energía de fisión nuclear, las de fusión combinan o fusionan los átomos en lugar de dividirlos. Se trata de una metodología similar a la que alimenta al Sol.

 

“Los combustibles y los desperdicios son seguros”, insistió Warren McKenzie, director de HB 11, compañía que tiene la patente de la nueva tecnología. McKenzie agregó que el reactor no necesitará un “intercambiador de calor” ni un “generador de turbina de vapor”.

Por lo tanto, si nuevas investigaciones confirman que no hay otro dispositivo mejor para este tipo de desarrollos, el reactor prototipo podría estar construido en una década.

 

 

 

Hasta el momento, las reacciones más poderosas que se conocen, en términos de generación de energía, han sido las fusiones nucleares y termonucleares. Estos procesos tienen lugar cuando varios núcleos atómicos de carga similar se unen y forman un núcleo más pesado.

Ahora, de acuerdo con una declaración publicada en la revista científica Nature, podría haber algo aún más poderoso. Los científicos descubrieron que durante la colisión de ‘quarks’ (moléculas subatómicas, apodadas ‘partículas belleza’) se puede liberar más energía que durante una fusión nuclear. Los ‘quarks’ son los constituyentes fundamentales de la materia, que se combinan de manera específica para formar partículas tales como protones y neutrones.

 

Recientemente se han hallado signos de la existencia de partículas aún más pequeñas que los ‘quarks’: ‘tetraquarks’ y ‘pentaquarks’. Al estudiarlas, fue posible descubrir que su formación se produce en el curso de colisiones de partículas elementales inestables. Este proceso se cumple en una fase análoga a las reacciones termonucleares que tienen lugar en las entrañas del Sol y otras estrellas, y libera incluso mayor cantidad de energía que en el Sol.

 

“Las colisiones de ‘tetraquarks’ dan como resultado la liberación de aproximadamente 200 megaelectronvoltios de energía, lo que es aproximadamente 10 veces mayor que la generación de reacciones termonucleares”. Hasta la fecha, tales reacciones no tienen aplicación práctica, ya que las partículas en las que se originan tienen un periodo vital muy breve, informó Herald Miller, profesor de la Universidad de Washington.

El riesgo de que se pueda crear una nueva y poderosa arma sobre la base del reciente descubrimiento es por el momento mínimo, dado que aún no se ha estudiado completamente la interacción de partículas subatómicas entre sí.

(°) Ingeniero. Presidente Honorario de FAPLEV. Vecino Solidario 2001.

Científicos prueban una esfera nuclear que podría revolucionar la energía de fusión

 

Cuestión de dominar la flecha del tiempo…..

 

 

“¿En Venus, enormes ciudades extraterrestres?”

Compilado por Manlio E. Wydler (¡)

Unas imágenes de la superficie de Venus publicadas este año han provocado un gran entusiasmo entre ufólogos y cazadores de ovni puesto que, según afirman, revelan evidencias de una civilización extraterrestre en el inhóspito ambiente de ese planeta, escribe ‘The Daily Star‘.

 

El usuario de YouTube ‘mundodesconocido’ publicó el pasado abril un video con un análisis de fotos y modelos en 3D de las supuestas estructuras encontradas. Según explica, en las imágenes “aparecen enormes ciudades, estructuras artificiales y todo tipo de elementos que parecen obedecer a construcciones inteligentes efectuadas por algún tipo de raza extraterrestre que habitó o colonizó el segundo planeta de nuestro sistema solar”.

 

Las fotos en cuestión provienen supuestamente de la sonda Magallanes, lanzada por la NASA en 1989, que estuvo cartografiando la superficie de Venus hasta 1994. Seguidores de las teorías de la conspiración incluso afirman que la agencia espacial estadunidense está al tanto desde hace años de las señales de la vida extraterrestre en ese planeta pero lo ha estado ocultando.

Sin embargo, no todos comparten el mismo entusiasmo con respecto a ese ‘hallazgo’. Vadim Chernobrov, coordinador de la organización rusa Kosmopoisk – que se dedica al estudio de hechos anómalos que puedan estar relacionados con la vida extraterrestre – señala que ese planeta es extremadamente difícil de explorar y que la sonda proporciona solo una imagen aproximada del lugar. “Todo está demasiado borroso, en sentido literal y figurativo, para poder afirmar nada de manera inequívoca“, observó citado por los medios rusos.

 

Aunque parezca mentira, ya se han logrado en laboratorios, producir hechos que actúan al revés de lo que dice la termodinámica….Es posible que se logre disminuir la temperatura de los objetos en , por ejemplo Venus, y disiparlos en el exterior.

 

Un equipo internacional de investigadores liderado por Kaonan Micadei, físico en la Universidad Federal ABC, en Brasil, se ha preguntado qué sucedería al modificar las condiciones iniciales de un sistema cerrado. Es decir, si el estado inicial de un sistema determina la dirección de la flecha del tiempo, ¿sería posible crear, aquí en la Tierra, sistemas cerrados cuyas condiciones iniciales obliguen a la flecha del tiempo a apuntar en la dirección opuesta? Si la respuesta fuera afirmativa, dentro de ese sistema los huevos fritos podrían “desfreirse” de forma espontánea y el calor podría fluir de los objetos más fríos a los más calientes.!!!!!!

 

 

(°) Ingeniero, Presidente Honorario de FAPLEV, Vecino Solidario 2001.

 

Resultado de imagen para Fotos de ciudades en Venus, según el mapeo de la zonda Magallanes

Resultado de imagen para Fotos de ciudades en Venus, según el mapeo de la zonda Magallanes

Otra prueba en contra de la hipotética materia oscura.

“Otra prueba que muestra que la materia oscura no existe”

Compilado por Manlio E. Wydler (°)

Las galaxias de gran tamaño, como la Vía Láctea, suelen estar rodeadas por un enjambre de galaxias menores. El modelo cosmológico estándar con materia oscura fría —la teoría ampliamente usada por los cosmólogos para describir la evolución y la estructura del universo a gran escala— predice que tales galaxias satélite deberían distribuirse de manera aleatoria en torno a la galaxia central. Sin embargo, hace tiempo que se sabe que eso no es lo que ocurre en la Vía Láctea ni en su vecina más cercana, Andrómeda, situada a unos 2,5 millones de años luz de nosotros. En ambos casos, varias de las pequeñas galaxias que las rodean parecen orbitar en un mismo plano delgado. ¿Se trata de una excepción, o es más bien un síntoma de que algo falla en el modelo cosmológico de consenso?

Un estudio reciente firmado por Oliver Müller, de la Universidad de Basilea, y otros investigadores ha aportado pruebas de que tal vez la Vía Láctea y Andrómeda no sean casos aislados. El análisis de 16 galaxias enanas de Centauro A, una galaxia situada a unos 12 millones de años luz de la Vía Láctea, ha encontrado que, también en este caso, las galaxias satélite parecen disponerse en un plano, lo que plantea varias preguntas sobre los modelos canónicos de formación de galaxias. Los resultados se publican en Science.

Según la teoría cosmológica dominante, en torno al 90 por ciento de la materia existente en el universo es materia oscura: una sustancia invisible y de naturaleza desconocida pero cuya existencia puede inferirse con claridad a partir de la potente atracción gravitatoria que ejerce sobre las estrellas y las galaxias. Hasta ahora nadie ha sido capaz de detectar por medios directos las supuestas partículas que la componen. Sin embargo, son muy pocos quienes ponen en duda su existencia, ya que la materia oscura permite explicar con gran éxito todo tipo de observaciones, desde la velocidad a la que rotan las galaxias individuales sobre sí mismas hasta el origen, la evolución y la estructura del universo como un todo.

No obstante, algo que nunca ha acabado de cuadrar con las predicciones del modelo cosmológico estándar es la peculiar distribución de galaxias enanas que exhiben la Vía Láctea y Andrómeda. En principio, los gigantescos halos de materia oscura que rodean a las grandes galaxias deberían adoptar una forma aproximadamente esférica, por lo que esa tendría que ser también la disposición de galaxias enanas en torno a una galaxia central. Sin embargo, en la Vía Láctea y Andrómeda no ocurre así. ¿A qué se debe?

Para explicar esta discrepancia se han propuesto varias hipótesis. En el caso de la Vía Láctea, algunos expertos han argumentado que el propio disco de la galaxia impediría ver la distribución completa de galaxias enanas, por lo que las relativamente pocas que se conocen no constituirían una muestra fiel del conjunto. Otros investigadores han defendido que esa distribución asimétrica de satélites obedecería al flujo de material a lo largo de la red cósmica, la gran «telaraña» de materia oscura que, según los modelos, describe la estructura a gran escala del universo. Y, por supuesto, tampoco han faltado quienes se han apoyado en estas anomalías para cuestionar las teorías dominantes sobre la materia oscura.

En el nuevo trabajo, Müller y sus colaboradores han analizado los datos correspondientes a 16 galaxias enanas en torno Centauro A, un sistema cercano a la Vía Láctea pero libre de su influencia gravitatoria y de la de Andrómeda, por lo que su estudio permite analizar el fenómeno de manera independiente. Se da la circunstancia de que, vistas desde la Tierra, las galaxias satélite de Centauro A se reparten aproximadamente a lo largo de un eje: la mitad de ellas se ven «por encima» de la galaxia central, y la otra mitad, «por debajo». Al medir la velocidad de todas ellas con respecto a la Tierra (y sustraer la velocidad de Centauro A), los investigadores han hallado que, salvo dos excepciones, las galaxias enanas situadas por encima de su anfitriona se estarían acercando a nosotros, mientras que aquellas ubicadas por debajo se alejarían. Es decir, todo parece indicar que las galaxias satélite de Centauro A se encuentran orbitando en un mismo plano, el cual se hallaría de canto según se ve desde la Tierra.

Para comprobar hasta qué punto tales resultados serían compatibles con las predicciones del modelo cosmológico estándar, los autores llevaron a cabo varias simulaciones cosmológicas del proceso de formación de un sistema galáctico similar a Centaurus A. Al hacerlo, encontraron que la probabilidad de obtener una configuración como la observada era inferior al 0,5 por ciento.

A la vista de los datos, el nuevo estudio señala que la curiosa distribución de galaxias satélite ya observada en la Vía Láctea y Andrómeda podría ser mucho más común en el universo de lo que se pensaba. De ocurrir así, ello pondría en duda la validez de las simulaciones del proceso de formación de galaxias basadas en materia oscura fría. Dada la baja probabilidad que dichas simulaciones asignan a estas configuraciones galácticas, «encontrar tres sistemas con tales características en el universo cercano se antoja extremadamente improbable», concluyen los autores en su artículo.

(°) Ingeniero, Presidente Honorario de FAPLEV. Vecino Solidario 2001.